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Abstract The lifetime from the normal form X = n X 2  f b + fi<(t) is analytically studied 
in terms of the escape time of leaving the unstable point X = 0. A perturbation theory, in the 
small noise parameter &, is introduced to analyse the escape of the stochastic paths. We show 
that the first passage time density satisfies a scale transformation. The anomalous fluctuation of 
the phase-space variable X(t) (when there is saturation,in the potential of the normal form) is 
analytically calculated wing an instutron-like approximation. An emphasis is placed on t h e d  
explosions in order lo exemplify a system undergoing hysteresis in a firSI-Order nou-equilibrium 
phase ansition. We wrried out Monte Carlo simulations showing excellent agreement with our 
theoretical predictions. 

1. Introduction 

The influence of noise on pattern-forming instabilities in non-equilibrium systems near the 
bifurcation point has received renewed attention, both experimentally and theoretically. 
Near the threshold the system can often be reduced to the study of the stochastic Landau 
equation (for the order parameter X), and the mesoscopic description (fluctuations) is solved 
using that stochastic differential equation (SDE) [I]. 

Nonlinear systems far from equilibrium exhibit a variety of instabilities when the 
appropriate control parameters are changed [l, 21. By such changes of the control parameters 
the system can be placed in an unstable state. The system, in general, will relax to a 
metastable (or global) stationary state. This transient process is triggered by the noise 
(O(f i ) ) ,  while the statistical description of such a transient constitutes one of the main 
subjects of non-equilibrium statistical mechanics. A detailed description of the relaxation 
process depends on the nature of the instability involved. Unstable states appear in 
first-order-like instabilities at the end point of hysteresis cycles. Typical cases are those 
possessing the symmetry transformation X -+ -X in the relaxation from X = 0. A 
theory for the relaxation at a subcritical pitchfork bifurcation when there is such an inversion 
symmetry has recently been successfully introduced 131. This approach is based on the fact 
that each stochastic path (up to O(&)) can be approximated systematically with a suitable 
perturbation on the deterministic path. Therefore, the lietime from an unstable state can 
be studied in terms of the random escape times which, in fact, are governed by those 
approximated stochastic paths. This theory allows us, in principle, to find the lifetime of 
any unstable state (i.e. the passage time to some macroscopic value X z O(1)). The lack 
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of an initial Gaussian regime does not pose any restrictions for determining the statistical 
properties of the lifetime from an unstable state [3,41. Here we will focus on the special 
case (near the critical point of the system) where inversion symmetry in the potential of the 
SDE is lost 
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The physical motivation to study the stochastic Landau equation, 

X = ax2 + b + &c(r) (1) 
lies in the fact that at the critical point for thermal explosive systems [5], the stochastic 
Semenov model takes the normal form given in equation (1). where 6 0 )  is a zero-mean 
Gaussian white noise and X represents the order parameter-of the system (the temperature). 
In general, the approach presented here can also be used to study unstable states other than 
X = 0. Here we will only be interested in the potential U ( X )  = -aX3/3 - bX, for a and 
b positive constants, as obtained from equation (1). 

It has been shown that the mean first passage time (m) of equation (1) gives 
information about the thermal explosion times of a homogeneous physicochemical reactor 
16.71. In a previous paper [5] we were able to show that the switching times of thermal 
explosive systems can be understood analytically by using our stochastic path perturbation 
approach (SPPA). In this paper we present a general approach €or tackling that kind of 
problem and we focus especially on the analytic expression of the first passage time density 
(m) for the class of universality posed in equation (1). Thus, in principle, all the moments 
of the passage time can be analysed. We point out that the time-scale characterizing the 
escape from the instability is the lifetime of the state calculated as the MFFT [3,4]. The 
transient relaxation of the system is also studied, i.e. the anomalous fluctuations of the 
phase-space variable (the moments of the order parameter ( X ( t ) " ) )  are calculated. We have 
also wade a comparison with Monte Carlo simulations which show an excellent agreement 
with our theoretical predictions. 

This paper is organized as follows. In section 2 we review the SPPA, study the marginal 
case b = 0, calculate the FPTD and its moments for b # 0, and we also compare the theory 
against simulations. In section 3 we introduce an instanton-like approximation in order to 
study the anomalous fluctuation of the order parameter X ( f ) .  In section 4 we sketch the 
method used for our simulations. Finally, in section 5 we introduce a discussion and present 
our future research programme. 

2. The stochastic path perturbation approach 

2.1. Theory 

When the process $(%) is a Gaussian white noise, the standard theory of a stochastic process 
gives the ~ m ,  associated with equation (I), by solving the corresponding adjoint Fokker- 
Planck operator [8]. The first and second moments of the from a small domain around 
X(t = 0) c 0 have been studied by using the Fokker-Planck techniques 191. An alternative 
for characterizing the time-scale of the escape process comes from the definition of a certain 
nonlinear relaxation time [IO], which in fact has been proved to be of the order of the MFPT 

The problem presented in this paper is the characterization of the time-scale of the 
escape process by looking at each stochastic realization of equation (1). In this way we 
are going to define a random escape time, re, as the random time when amplitude X ( t )  
diverges. This means that the time re = f&, b, E ,  D) is going to be a function of a random 
number, D, which will be correctly characterized by a certain probability measure P(S2). 

191. 
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Then, in principle, all the moments oft. can be calculated by taking the mean value over 
the probability measure P(S2). This picture has the advantage over the usual Fokker-Planck 
technique because it displays the existence of the relevant physical parameter of the system 
K = b3/(aez) in a direct wayt. Depending on the sign and value of K, the system will 
have different behaviour; here we will only be interested in the case K > 0. Alternatively, 
ow picture allows the analytic calculation of the F m .  Fluctuations of the paths will be 
seen to be non-symmetric. The uniqueness of the escape time te will also be shown. The 
FPTD will be obtained from the transformation of the random variable theorem and the FPT?) 
will be shown to be a non-symmetric broad distribution peaked around t = m. 

In order to introduce a perturbation theory it is convenient to write the process X ( t )  as 
the ratio of two stochastic processes: 

Using the nonlinear transformation (2) in equation (1) we obtain an equivalent set of 
coupled equations: 

(3) 

(4) 

d 
- H ( t )  = bY( t )  + &Y(t )c( f )  
dt 
d 

- Y ( t )  = -oH(t) 
dt 

(c(t)} = 0 and ([(t)$(t’)} = S(t  - t‘). 
where 

Here the initial conditions are H ( 0 )  = X(0)  = 0 and Y(0) = 1. In the absence of noise 
( E  = 0) from equations (3) and (4) we obtin $Y( t )  = -abY(t), which is in agreement 
with the dynamics of the deterministic system. ,For small E an approximate solution of the 
coupled equations (3) and (4) can be considered to be approaching Y ( t )  in equation (3). At 
the initial noisediffusive regime in which YO) is close to its initial value, H ( t )  is essentially 
a Wiener process plus a drift. Hence, we obtain 

H ( t )  Z bt + &W(t) (5) 

W ( t )  = 1 dt’ (6) 

is the Wiener process, and W(0)  = 0 must be used. In order to find an iterative solution, 
starting with Y ( 0 )  = 1, we solve equation (4) with the approximate solution of H ( t )  given 
by equation (5): 

where 
f 

Y(r)  E 1 -a [bt’ f &W(t’)] dt‘ 

(7) 
1’ 

Z 1 - &abt2 --a&Q(t) 

where the stochastic process Q(t)  is defined by 
f 

Q(t)  = W(t’) dt‘. (8) 

Thus, S2(f) is a renormalized Gaussian process (see appendix). 

t Note t h e  our universal panmeter K = b3/(ac2) is related to the panmeter k of [91 by K = k 3 .  
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Hence, our first approximation for the stochastic path X ( t )  is 
bt + &WO.) X ( t )  2 

l - ( a b t 2 ) / 2 - a & 2 ( t ) '  (9) 

At this level the complicated mechanism of the escape process can be noticed. The 
numerator is a Wiener process (of OCA)) at the early initial stage if b = 0, otherwise 
there is competition between the drift and the diffusion. From this perturbation it is easy to 
observe the non-symmetric fluctuations of the paths. The denominator gives the corrections 
to the statistics due to the nonlinear contribution in the normal form (1) (i.e. ax2). Note 
that the numerator of equation (9) is bounded for t # CO, since the Wiener process fulfils 
W ( t ) / t  -+ 0 for t -+ 00 with probability one. 

Rescaling time as s = t ' / t  in the integrals of the Wiener process, we obtain from 
equation (8) 

Q (t) = t 3 4 - 2  (10) 
where 52 = Q(1) is a random variable characterized by the probability measure 

P(Q) = P- Gexp(-3n2/~). (11) 

(See appendix.) The escape time, defined by X(t,) =CO, can then be obtained as the zero 
of the denominator of the stochastic path given in equation (9): 

1 = iabt: + a &52t:/2. (12) 
Up to this order (&) the SPPA gives the random escape time, t., as a mapping with the 

random number Q. The random escape time is found by inverting te as a function of Q. 
Note that P(Q) is a symmetric renormalized Gaussian probability measure. 

Nevertheless, from equation (12) it  is easy to see that there is a symmetry breaking in 
&(a )  (i.e. under the transformation Q -+ -52) as can be appreciated from a simple graph 
of the solution of equation (12). This is a consequence of the symmetry breaking X -+ -X 
in the potential U(X) of the normal form (1). 

2.2. The marginal case (b = 0) 

From equation (12) the hivial case 6 = 0 gives 
f - (a2,Q2)-1/3 
e -  

for the escape time. Then, the MFPT (starting from the initial condition X(0) = 0)  can be 
obtained from the statistics of (C2-2/3). Equation (13) shows that for the marginal case the 
scaled parameter of the system will be (a% )-'I3. Using the results of the appendix we 
immediately obtain 

(te),,=,, = (a2€) -]I3 r (1 / 6 ) (3 /~ ) ] '~ /47  (14) 
for the m. 

In general, higher momenta will diverge as can be seen from the mean values of (Q-'") 
if m > 1, indicating the occurrence of an anomalous broad FpTD which, in fact, goes as 
P(t,) m t;*exp (-$(azEt2)-1). This is a consequence of the flatness at the unstable point 
X = 0 (the marginal case). 

If b # 0, equation (12) cannot be easily inverted as i. = &(a, b. E ,  Q) (uniqueness of 
a positive te is simple to see from a hand graph of equation (12)). Therefore, in the next 
section we will work out E'(&) by looking at the Jacobian of the transformation ldQ/dt.l. 
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2.3. TheJSrst pmsage time density 

In order to obtain the probability density of the escape times (i.e. the probability that 
amplitude X ( t )  diverges between te and te +dt,), we begin with the relation between 51 and 
re expressed in equation (12). Knowing P(P) and using the kansfonnation of the random 
variables theorem, it is possible to calculate the FPTD P(&) as 

Defining the deterministic escape time as 

.=g 
and using the fact that the secular equation fort, naturally introduces the physical parameter 
K = b3/(acZ)t,  we find the following expression for the FPTD as a function of the only 
two parameters K and t: 

with 

1.5 

1.0 

- s 
0.5 

0.0 

F i p  1. Plot of FPTD PK(T = 2. t.) as a function of 
t, for several values of K (4, IO, 100). The dots show 
the Monte Carlo simulations of the SDE (I) .  
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Figure 2. Plot of m P K ( ~  = 50, r,) as a function of 
& for several values of K (=I, LO, 100). The dofs show 
the Monte Carl0 simulations of,the SDE (1). 

Figures 1 and 2 depict the P(t,) curves for different values of r and K. Also, the 
corresponding Monte Carlo simulations are shown for the s b e  set of parameters. 

t Equation (12) for r, can be transformed into a random dgebnic polynomid of degree 4, where ‘J is the random 
variable (Gaussian). The discriminat of the roots leads, naturally. to the definition of K as was pointed out in 
section 2.1. See also M. 
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From the structure of equations (17) and (18) we obtain the scale invariance property 

where o! is any arbitrary length scalet. This property can also be observed by the similar 
appearance of figures 1 and 2, where the relation of equation (19) is satisfied with the 
scaling o! = 25. 

The approximation described above has a systematic underestimation of the escape 
time [3]. To solve this problem we introduce a simple modification to our approach. From 
equations (3) and (4) we find 

dz -Y(t) = -abY(t) -a&Y(t)<(t). 
dt2 

This equation can be identified with the Kubo oscillator [SI. Due to the fact that <( t )  is a 
Gaussian white noise, it is possible to obtain an exact equation for the mean value of YO): 

(21) 

By introducing the initial condition (Y(0) )  = 1, the solution of equation (21) is 
( Y ( t ) )  = cos(&%). The mean value vanishes when tm = JC/-,~&, independently of 
the noise parameter E ,  while our approximation, equation (12), with E = 0 gives a different 
escape time r = s tm, with s = &r. A simple way to improve our result is to force 
equation (12) to vanish at the correct time t,,, for arbitrary e. This is done by introducing 
the quantity 6 by 

(22) 
Thus, redefining the physical constants as a' = 8% and b' = S'pb, the formulae for 
PK(r, te),  K and r remain valid. In this way we improve the FPTD given by equation (17). 
Figures 1 and 2 shows the result of taking this procedure into account. 

2.4. Moments of the FPTD 

dZ - (Y(t ) )  = -ab(Y(t)). 
dtz 

1 = $zb(St.)' + a  &Q'(St,)"'. 

From equation (17) these cumulants can be analytically calculated as 

(fE) = rF1 (K.) I (2.5) 
where 

t Note that K is invariant under the scale uansfomtion X -+ lX, t -+ .vf of equation (I) ,  therefore equation (19) 
follows. 
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0.1 1.0 10.0 , 1W.D 
K 

Figure 3. Plot of the dimensionless mean value and variance of PK(T ,  re) as a function of 
K = b3/(ac2). the universal parameter of the normnl form (1). 

In figure 3 we show (te)/r and ((le - (fe))’)/r2 as functions of the universal parameter 
K. This figure shows that the MFPT goes to r as soon as K >> 1; alternatively, the variance 
(second cumulant) goes to zero in the same limit. Note that this limit is achieved for small 
noise (for,fixed a and b). This means that the FPT?) goes to a peaked density centred around 
r with a very narrow width. We stress that using the initial condition X ( 0 )  = 0 our results, 
given in equations (25) and (27). are beyond the scope of the Colet et a! 191 analysis . We 
wish to remark that for the initial condition X ( 0 )  = 0, our theoretical predictions are in 
excellent agreement with the Monte Carlo simulation as can be readily seen from figures 1 
and (2). 

3. lkansient fluctuations 

In this section we basically follow the work done in 131. The transient fluctuation in the 
phase-space variable is defined as the mean quadratic deviation of the X ( t )  process 1111: 

A ( t )  = (X’) - (X)’. (29) 
In order to calculate the anomalous fluctuation, a saturation term in the normal form 
equation (1) must  be incorporated. Thus, we approximate the transient toward a global 
attracting solution by introducing the instanton-like approximation 

X ( t )  = xoO(t - r e )  (30) 

with q the O(1) macroscopic amplitude of the space variable (characterizing the attractor), 
and O(t-t,) the Heaviside step function. Taking xo = 1, the transient anomalous fluctuation 
is given by 

A(t)  = A( t ) ( l  - A ( t ) )  (31) 



In this instanton-like approximation the maximum of the function A(t )  is at t = r. 
For fixed a, b the width of A(t )  increases with the strength of the noise as can be seen 
from equations (31) and (33). If we scale t and t by a length U, the transient anomalous 
fluctuation remains unchanged, so we can conclude that a scaleinvariance transformation 
is also present in A@). 

I 0.2 

io 

um m 

Figure 4. Plot of momdous transient fluctuations ~ ( t )  = ( ~ ( 2 ) ~ )  - ( X ( I ) ) ~  ns a function o f t  
far r = 50 and sevenl values of K (-1. IO, 100). Here, the insonfan-like appmximatian has 
been used. 

Figure 4 depicts the A(t)  curve for t = 50 and different values of K. In the 
transient regime the initial fluctuations are amplified and give rise to the transient anomalous 
fluctuations [4,11] of O( 1) as compard with the initial or final fluctuations of O(&. 

4. Monte Carlo simulations 

We have accomplished Monte Carlo simulations of the SDE, equation (l), to check the 
accuracy of our approach. From these simulations we have obtained the histogram of 
PK(z. 1.) shown in figures 1 and 2. .We have used a Heun algorithm [I21 that discretizes 
the SDE (1): 

(34) 
h 

X(9Cl )  = x(t;)  + 5 [&(ti) +P2(t;+,)) +U;] f a w i  

with the predicator step 

i ( t i+ , )  =r ( r i )+h(a~~(z; )+b)+ l / ; i ;ur , .  (35) 
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Here, h is the time step h = It+, - 9, and wi are independent Gaussian distributed random 
variables with zero-mean value and variance one. These random numbers are generated 
using the Box-Muller method [13]. 

We record the escape time re at which x( t ; )  > XO. the escape position for the first time. 
This procedure is repeated N times to get the histograms. To obtain the results shown in 
the figures we have used this procedure with N = 200000 and h = 0.01. 

5. Discussion 

This paper is inspired by a method recently developed and already successfully applied to 
study relaxation from a subcritical pitchfork bifurcation [3]. In a previous paper [5] it was 
shown that the stochastic Semenov model leads to the normal form (1). Therefore, its MFFT 
(i.e. the lifetime of the state) is a relevant quantity to study thermal explosive systems near 
the critical point [7]. 

In this paper we have analytically found that the FPTD leaves the unstable state X ( 0 )  = 0 
of the SDE (1). In section 2.1 we introduced the SPPA, and the stochastic paths have been 
obtained up to O(&. Figures '1 and 2 show a very good agreement with the Monte 
Carlo simulation if K > 1. For small values of K = b3/(aez) (the universal parameter of 
our normal form) the agreement is not so good because for fixed a, 6, small values of K 
means a large noise and, therefore, our paths (equation (9)) start to fail. In section 2.2 the 
marginal case b = 0 was discussed. In that particular case all the fractional moments of the 
passage times were given in terms of the statistics of Also, the natural dimensionless 
parameter of the system was shown to be In particular, at the marginal case, 
the FPTD has a long tail characterized by the power-law asymptotic from P(&) Es t;" for 
re + 03. A more interesting situation is when b # 0; in this case equation (17) gives the 
desired result. A remarkable result found from the F m  P.y(r, t,) is the scale invariance 
property given in equation (19), which becomes a useful tool to analyse experimental results. 
The moments of the F m  P,y(r.. t.) were analytically calculated (see section 2.4) showing 
the expected behaviour (figure 3). i.e. for fixed a, b, as soon as the noise decreases (K >> 1) 
the MFFT goes to the deterministic value r and the width of the FFTD goes narrow. 

The transient anomalous fluctuation characterizes the transition from O(*) to 0(1) 
in the phase-space variable X ( t )  [4,11]. This phenomenon occurs when the normal form 
has a saturation in its potential (i.e. the relaxation toward an attracting solution). We 
have studied this anomalous behaviour in the variance A(t )  = (X( t ) ' )  - ( X ( t ) ) *  by 
introducing an instanton-like approximation for the stochastic realization of the full system 
(see equation (30)). Figure 4 shows this phenomenon which also depicts the scale-invariance 
property. 

Among the interesting phenomena to be studied are the thermal explosive times in non- 
homogeneous~physicochemical reactors [7]. In this situation we have to take into account 
the spatial dependence in the order parameter X (the temperature), which appears in the 
normal form (1). Our SPPA can also be implemented to tackle this problem. Work along 
this line is in progress. 

Acknowledgments 

MOC wishes to thank Professor M San Miguel, Professor G Nicolis and Professor F de 
Pasquale for useful discussions. We would also like to express our gratitude for the grants 
ANTORCHAS proyecto A-13015/1-000012 and CONICOR proyecto N 323294. CEB and 



3886 

GJS are grateful to the Centro At6mico Bariloche for its hospitality and to the Secretaria de 
Ciencia y Tecnologia de la Universidad Nacional de C6rdoba (Argentina) for all its support. 
The authors also thank Dr V Grunfeld for a critical reading. 

M 0 C6ceres et al 

Appendix 

From the definition of equations (6) and (8) it is simple to see that Q(t )  is a zero-mean 
Gaussian process. Its generating functional can be calculated using the cumulant expansion 
techniques [SI of the Wiener process: 

G ~ ( [ k ( t ) ] )  =(exp(/ik(t)52(t)dt)) =exp[ - i / / k ( t ) k ( s )  (F) drds]. 
wleoer 

Therefore, the probability measure of the random variable 52 = Q(1) is 
~ 

P ( Q )  = -exp(-$*). E 
Using this probability measure it is easy to obtain all the moments of $1: 

By symmetry, all the odd moments are zero. Note that the inverse moments 
divergent quantities if n > 1. 

are 
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